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Density of states for a dielectric superlattice. II. TM polarization

Jorge R. Zurita-Sa´nchez and P. Halevi
Instituto Nacional de Astrofı´sica Óptica y Electrónica, Apartado Postal 51, Puebla, Puebla 72000, Mexico

~Received 14 June 1999!

We present an analysis of the band structure, the equifrequency surfaces, and the density of states~DOS! for
the transverse magnetic~TM! polarization mode of the dielectric superlattice, modeled by means of Dirac-delta
functions. This complements a recent article@Phys. Rev E59, 3624~1999!# that analyzes the case of transverse
electric~TE! polarization. Unfortunately, for this simple model, there is no manifestation of the Brewster effect
in the band structure for the TM modes. For large values of the frequency or the grating strength, the
equifrequency surfaces essentially degenerate into a set of concentric, hollow, and narrow cylinders centered
on the superlattice axis. The DOS is enhanced relative to free space for any frequency and it exhibits discon-
tinuities in the slope at the band edges. These results are relevant to the spontaneous emission by an atom or
to dipole radiation in one-dimensional periodic structures. The differences between TE and TM modes are
discussed. We take the opportunity to correct an error in the DOS calculation for TE polarization in the article
referred above.

PACS number~s!: 42.70.Qs, 42.25.Bs, 78.20.Bh
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I. INTRODUCTION

Recently the transverse electric~TE! polarization modes
were calculated for an idealized model of a dielectric sup
lattice ~SL! @1#. This ‘‘Dirac-comb’’ model is defined by
means of a one-dimensional, periodic distribution of Dir
delta functions in a background dielectric medium@2#, and
yields a band structure that is similar to that obtained fr
the realistic model of the SL@3#. In this work, here referred
to as paper I, the surfaces of constant frequency@v(k…
5const# and the density of modes, or density of sta
~DOS!, were also plotted for the TE modes.

The present paper is closely related to paper I; it conce
the very same, ‘‘Dirac-comb’’ model of the SL, now, how
ever, we study the transverse magnetic~TM! modes~Sec. II!,
thus completing the investigation of the normal modes of t
system. In Sec. III we present the calculation of the D
using the equifrequency surfaces. In Sec. IV we take
chance to correct an error in the calculation of the DOS
the TE modes in paper I. The conclusions are presente
Sec. V, although the differences between the TE and
modes are discussed throughout the paper.

We complement the list of references in paper I with fo
papers by Scalora and associates@4–7#. They are all re-
stricted to propagation parallel to the SL axis, and mos
deal with pulse transmission in structures with a finite nu
ber of periods. Specifically, in Ref.@5# analytic expressions
are found for the DOS in terms of the complex transmiss
coefficient.

II. NORMAL MODES

A. The Dirac-delta model

We consider an inhomogeneous, linear, and nonmagn
medium in which the Dirac-delta model is used to repres
the dielectric constant dependence on the position, i.e.,

e~x!5eo1gd (
n52`

`

d~x2nd!. ~1!
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Here theg parameter is called thegrating strength, d is the
period of the dielectric function, andeo is a background
dielectric constant. As a brief explanation of this ‘‘Dirac
comb’’ model, we can say that it comes from considering
real SL, formed by an infinite array of alternating layers w
dielectric constantseo andem whose widths ared2D andD,
respectively~see Fig. 1 of paper I!, andd is the period. If we
take the limitsem→` and D→0 in such a way that the
factor emD/d is kept constant, then the Dirac-delta mod
can be obtained~see paper I!. In this limit the factoremD/d
becomes the grating strengthg that appears in Eq.~1!.

B. TM modes

In an inhomogeneous dielectric medium, Maxwell’s equ
tions lead to the following wave equation for the magne
induction fieldB(r ):

“

2B~r !1
“e~r !

e~r !
3@“3B~r !#1

v2e~r !

c2
B~r !50. ~2!

Here v is the frequency of the monochromatic field. Sin
the dielectric constant function, Eq.~1!, depends only onx,
for the TM polarization the magnetic inductionB lies in the
yz plane. Therefore it must have the functional form

Bk~x,y,z!5Bk~x!eı̇ (kyy1kzz)êk , ~3!

whereêk is an arbitrary unit vector in theyz plane. Substi-
tuting Eq.~3! into Eq. ~2!, we obtain

d2Bk~x!

dx2
2

1

e~x!

de~x!

dx

dBk~x!

dx
1Bk~x!Fvk

2

c2
e~x!2ky

22kz
2G

50. ~4!

Within the regions between the barrierse(x)5e05const,
so the second term of Eq.~4! vanishes. Then the solution fo
Bk(x) is of the form
5802 ©2000 The American Physical Society
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Bk
(n)~x!5AneiK (x2nd)1Bne2 iK (x2nd),

~n21!d,x,nd, ~5!

n50,61,62, . . . .

HereK is given by

K5Avk
2

c2
eo2ki

2, ~6!

andki is magnitude of the projection of the wavevectork on
theyz plane, i.e.,ki

25ky
21kz

2 . Using the Bloch theorem it is
possible to obtainBk in thenth region in terms of the region
n50, that is,

FIG. 1. Band structure for the Dirac-delta model superlatti
obtained by using the dispersion relation Eq.~17! for eo51, ~a! g
50.1 and~b! g50.6. The widths of the forbidden bands increa
with g; the upper band edges move downward, while the low
band edges are fixed atvd/c5pn (n50,1, . . . ) on thefrequency
axis. The free-space dispersion relation is recovered in the limg
→0, namely, the band gaps shrink to zero.
Bk
(n)~x!5eikBnd@AoeiK (x2nd)1Boe2 iK (x2nd)#,

~n21!d,x,nd, ~7!

n50,61,62 . . . .

Here kB is the Bloch wavevector, defined in the first Bri
louin zone (2p/d,kB<p/d). We tried to apply the same
methodology used in I for the TE polarization in order
derive the boundary conditions at the ‘‘barriers’’x5nd.
That is, we integrated Eq.~4! over a very small interval
around the barriers. Unfortunately, due to the strong sin
larity of the dielectric constant functione(x) at the barriers,
this procedure failed. Instead, we use another appro
namely, we solve the eigenvalue problem for the model
Eq. ~1! as a limit of the real SL.

C. Solution of the eigenvalue problem; the band structure

First, consider a real SL as the one described at the en
Sec. II A. For this case, the coefficients for the solution
the field Bk

(n)(x) in two regions with dielectric constanteo

separated by a region with dielectric constantem , are related
by @3#

S An21

Bn21
D 5S f 1 f 2

f 2* f 1*
D S An

Bn
D , ~8!

f 15e2 iK (d2D)Fcos~KmD!2
i

2 S Kmeo

Kem
1

Kem

Kmeo
D sin~KmD!G ,

~9!

f 252
i

2
eiK (d2D)FKmeo

Kem
2

Kem

Kmeo
Gsin~KmD!, ~10!

Km5Av2

c2
em2ki

2. ~11!

Now we apply the following limits@2# to the matrix elements
Eqs.~9! and ~10!:

D→0, em→`,

AemD→0, emD→gd5const.

Then Eqs.~9! and ~10! simplify to

f 15e2 iKd@12 ia~K !#, ~12!

f 25 ia~K !eiKd, ~13!

a~K ![
gd

2eo
K. ~14!

Now, from Eqs.~5! and ~7!

S An

Bn
D 5eikBdS An21

Bn21
D . ~15!

Then combining the Eqs.~8! and~15! the characteristic ma
trix M is obtained

,
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M S An

Bn
D[S f 12e2 ikBd f 2

f 2* f 1* 2e2 ikBdD S An

Bn
D 50. ~16!

In order to have nontrivial solutions, the determinant ofM
must be zero. Then we obtain that

cos~kBd!5cos~Kd!2a~K !sin~Kd!. ~17!

Equation~17! is the desired dispersion relation. It is formal
the same as the dispersion relation Eq.~19! of paper I for the
TE modes. The difference is entirely due to the fact that,
TE modes,a(K)5gdv2/(2c2K). In the present case,a de-
pends onv only implicitly, throughK, and this will affect
qualitatively the DOS.

In Fig. 1 we plot the band structure forg50.1 andg
50.6. The shadowed regions are the allowed bands.
known @8# that the lower and upper edges of the first ba
are characterized bykB50 and kB56p/d, respectively.
The order is inverted for the second band, namely, its lo
and upper edges are given, respectively, bykB56p/d and
kB50. For the third band the corresponding values arekB
50 andkB56p/d, and so on for the other bands. Thus
the band edges are characterized by cos(kBd)561. For these
values of the left side of eq.~17! there is one simple solution
namelyKd5pn, wheren50,61,62, . . . . Using Eq.~11!
this gives

v2

c2
eo5

p2

d2
n21ki

2 . ~18!

It follows that the lower band edges are independent og
@see Figs. 1~a! and 1~b!#. For ki50 we have vd/c
5(pAeo)n, which, we see from Fig. 1, gives the intercep
of the lower band edges on the frequency axis. In
asymptotic limitv/k→c/Aeo, which is the speed of light in
the background medium between the barriers. It is interes
that for n50 we also obtainv/k5c/Aeo, which is to say
that the lower edge of the first band is a straight line. Th
glancing at Fig. 1, it is apparent that alwaysv/k.c/Aeo. It
follows from Eq.~11! thatK can never be imaginary—unlik
the case of TE polarization.

Equation~18! is valid for TE, as well as for TM modes
except forn50. In the case of the lowest (n50) TE band,
K50 is not a solution for kB50 becausea is inversely
proportional toK @hence the second term in Eq.~19! of paper
I does not vanish#. Therefore, the lowest band edge is no
straight line in case of TE polarization.

It is not possible to derive an explicit formula for th
upper band edges, and Eq.~17! must be solved numerically
These bands are displaced downward as theg parameter in-
creases, so the forbidden bandgaps get wider, as is see
comparing the Figs. 1~a! and 1~b!. In fact, we notice from
Fig. 1 that the band structure is very sensitive to theg pa-
rameter.

The realistic model of the superlattice predicts a distin
tive feature for the TM modes, namely, the closure of
band gaps alongside a straight line through the origin in
v/c versuski diagram@3# because of the Brewster’s cond
tion. The slope of this line isA1/em11/eo. In the limit em

→` this reduces to 1/Aeo, which just coincides with the
r

is
d

r

l

e

g

,

by

e
e

lower edge of the first band. It is then clear that our ‘‘Dira
comb’’ model cannot give rise to the Brewster effect an
indeed, no closure of the bandgaps is manifest in Fig. 1.

Next we turn to the determination of the eigenvecto
namely,Bk

(n)(x). Using Eq.~16! the coefficientsAo andBo

are related by

Bo5
e2 ikBd2 f 1

f 2
Ao , ~19!

so,Bk
(n)(x) from Eqs.~19! and ~7! can be expressed as

Bk
(n)~x!5AoeikBdnH eiK (x2nd)1

i

a
@~12 ia!e22iKd

2e2 i (kB1K)d#e2 iK (x2nd)J . ~20!

III. DENSITY OF STATES

We obtain the DOSD(v) from Eq.~25! of paper I, which
is independent of the polarization

D~v!5
V

4p2Evk

ki

u¹kvu
dk t . ~21!

The integration is carried out on the curve formed by t
intersection of anequifrequencysurface@v(k)5const# with
the kBky ~or kz50) plane, anddk t is a differential segmen
of this curve. The equifrequency surfaces are formed by
tating these curves around thekB axis. In Fig. 2 we display
the curves obtained from the intersection of the equif
quency surfaces with thekBky plane for several normalized
frequency (vd/c) values and forg50.1 andg50.6. The
horizontal lines that appear in Fig. 1 represent the cho
frequency values for the Fig. 2 plots. The line~a! is entirely
in the first allowed band, consequently the equifrequen
curve is closed. In the limitg→0, the equifrequency surfac
is the spherekB

21ky
21kz

25v2eo /c2, as it should be. Asg
increases the ‘‘ellipse’s’’ eccentricity increases. Part of li
~b! lies in the first forbidden band gap and the other part
the first allowed band; therefore the equifrequency surfac
interrupted in the region where the solution for the field do
not exist. The lines~c! and~d! represent more complex plot
since they cross several forbidden and allowed bands. A
we can notice that for a given frequency, the equifreque
curves for different values ofg are tangent to each other a
kB50 and atkBd56p. This can be understood from th
fact that Eq.~18!, for the lower band edges, is independent
g. For comparison, in Fig. 2 we also show the equifrequen
surfaces for the TE polarization mode, withg50.6 ~dotted
line!. We call attention to the fact that, for higher values ofv
or g, these plots tend to become elongated in direction ofkB .
This occurs for both modes, but more so for the TE pol
ization. The meaning of this feature is that, for large frequ
cies or grating strength~or dielectric contrast, in the case o
a real SL!, the equifrequency surfaces essentially becom
set of concentric, hollow, and narrow circular cylinders; s
Fig. 2~d!, g50.6. Of course, the explanation is that, th
greaterv or g are, the wider the band gaps become, th
narrowing down the values ofki allowed for propagation.
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FIG. 2. Four intersections of normalized equifrequency surfacesv(kB ,ky ,kz)d/c5const with the normalizedkBd2kyd plane for TM
and TE modes. The solid lines and the dashed lines correspond to TM modes forg50.1 andg50.6, respectively. The dotted line
correspond to TE modes forg50.6, and are plotted for comparison.~a! Normalized equifrequency surface forvd/c51.0. ~b! For vd/c
53.0 the curves are interrupted because there is no propagating solution for this region ofki values; see Fig. 1, line b.~c! For vd/c
54.0. ~d! For vd/c56.0 there are two interrupted regions, as can be understood from Fig. 1, line d.
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The gradient of the frequencyv with respect to wave
vectork is given by

¹kv5
]v

]kB
x̂1

]v

]ky
ŷ1

]v

]kz
ẑ. ~22!

Using the Eqs.~11! and ~17!, Eq. ~22! becomes

¹kv5
c2

e0v F Ksin~kBd!

F@K~v,ki!#
x̂1kyŷ1kzẑG . ~23!

Here the functionF@K(v,ki)# is defined as

F@K~v,ki!#[sin~Kd!S 11
g

2e0
D1

g

2eo
Kd cos~Kd!.

~24!

Finally, substituting Eq.~23! into Eq. ~21! the DOS for TM
polarization is obtained as
D~v!5
Veov

4p2c2Evk

kiuF@K~v,ki!#u

AK2 sin2~kBd!1$kiF@K~v,ki!#%
2

dk t .

~25!

The DOS function vs normalized frequencyvd/c for sev-
eral values ofg is shown in Fig. 3. The discontinuities of th
slopes occur at the frequency band gap edges forki50
@compare with the interceptsv(ki50) in Fig. 1 for g50.1
andg50.6]. When the frequency reaches a lower band g
edge the slope of the DOS function is abruptly diminishe
On the contrary, when it reaches the upper bandgap edge
slope suddenly increases. For these latter frequency va
given by vd/c5(p/Aeo)n according to Eq.~18!, the DOS
coincides with the free space DOS~dashed curve!. This fea-
ture is not exhibited by the TE polarization, as we will see
next section. The DOS never vanishes and, for any freque
v, it is never smaller than that of free space.
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IV. COMPARISON WITH THE DOS FOR THE TE
POLARIZATION

We take the opportunity to correct an error in paper
specifically in the calculation of they and z components of
the gradient ofv with respect tok @Eq. ~26! of paper I#.
Equations~27! and ~28! of paper I should be replaced by

u¹kvuTE5
c2

veo
U 1

F~v,K~v,ki!! H KsinkBd x̂

1H F@v,K~v,ki!#2
g

eo
sinKdJ ~kyŷ1kzẑ!J U,

D~v!TE5
Veov

4p2c2
E

vk

dk t

3
kiuF@v,K~v,ki!#u

AK2sin2kBd1ki
2$F@v,K~v,ki!#2~g/eo!sinKd%2

,

where the functionF@v,K(v,ki)# is defined by Eq.~29! of
paper I.

The corrected Density of States~DOS! plot obtained from
Eq. ~28!, for several values ofg, is shown in Fig. 4. In
comparison to the original figure~Fig. 5 of paper I!, some
qualitative features remain the same: the discontinuities
the slopes of the curves occur at the band gap edges,
there is an enhancement of the DOS with respect to tha
free space. The differences are that the sharp peaks a
lower edges of the gaps are absent and that curves for
ferent values ofg never cross.

V. CONCLUSIONS

Using the ‘‘Dirac-comb’’ model of a SL, we have derive
the band structure for the TM modes. The lower band ed

FIG. 3. Normalized density of states @D(vd/c)
5dN/d(vd/c)# for TM polarization as a function of the norma
ized frequencyvd/c, for several values ofg. The inset extends the
frequency range to the interval (0,2p). Note the discontinuities in
the slope for frequencies that define the band gap edges. Notice
DOS is enhanced for all values ofv andg with respect of that of
free space.
,
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are given by a simple, explicit formula and they do not d
pend on the grating strengthg. This is also valid for the TE
modes except for the lowest band edge. The lowest b
edge is a straight line of slopev/ki5c/Aeo for TM modes;
not so for TE modes. We have also plotted the equifreque
surfaces. For large values ofv or g, they become, essen
tially, a set of concentric, hollow, and narrow circular cylin
ders centered on the SL axis. For the TM polarization,
reduction of the DOS occurs for any frequency with resp
to that of free space. The DOS is an increasing function
the frequency, and it has slope discontinuities at the b
edges. At the upper band edges the slope diminis
abruptly, then at the lower band edges it abruptly increa
These characteristics are also present for the TE polariza
However, the DOS plots for TM modes, for different valu
of g join at the upper band edges, while, in compariso
those for the TE modes never cross.

Even though the widths of the forbidden band gaps can
adjusted withg, this ‘‘Dirac-comb’’ model for the TM po-
larization has the disadvantage that the Brewster effect is
manifest. Therefore, some qualitative features of the DOS
the TM modes for the real SL, in comparison to those of t
simplified model, could be different. On the other hand,
the TE polarization the parameterg, can be adjusted to give
qualitative insight into optical properties of the real SL f
this polarization. We expect these results for the DOS to
relevant for the analysis of spontaneous emission in su
lattices.
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FIG. 4. Normalized density of states @D(vd/c)
5dN/d(vd/c)# for TE polarization as a function of the normalize
frequencyvd/c for several values of the grating strengthg. The
inset extends the frequency range to the interval (0,2p). We can see
the discontinuities in the slope for frequencies that define the ba
gap edges.~The plot is a bit ‘‘wavy’’ for the normalized frequency
values close to 2p because of computational difficulties.! Notice
that the DOS is enhanced for all values ofv and g. This figure
replaces the erroneous Fig. 5 of paper I.
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