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Density of states for a dielectric superlattice. 1. TM polarization

Jorge R. Zurita-Sachez and P. Halevi
Instituto Nacional de Astradica Qptica y Electraica, Apartado Postal 51, Puebla, Puebla 72000, Mexico
(Received 14 June 1999

We present an analysis of the band structure, the equifrequency surfaces, and the density(BG8&tes
the transverse magnetitM) polarization mode of the dielectric superlattice, modeled by means of Dirac-delta
functions. This complements a recent artighhys. Rev E59, 3624(1999] that analyzes the case of transverse
electric(TE) polarization. Unfortunately, for this simple model, there is no manifestation of the Brewster effect
in the band structure for the TM modes. For large values of the frequency or the grating strength, the
equifrequency surfaces essentially degenerate into a set of concentric, hollow, and narrow cylinders centered
on the superlattice axis. The DOS is enhanced relative to free space for any frequency and it exhibits discon-
tinuities in the slope at the band edges. These results are relevant to the spontaneous emission by an atom or
to dipole radiation in one-dimensional periodic structures. The differences between TE and TM modes are
discussed. We take the opportunity to correct an error in the DOS calculation for TE polarization in the article
referred above.

PACS numbses): 42.70.Qs, 42.25.Bs, 78.20.Bh

I. INTRODUCTION Here theg parameter is called thgrating strengthd is the
period of the dielectric function, and, is a background
Recently the transverse electi€E) polarization modes dielectric constant. As a brief explanation of this “Dirac-
were calculated for an idealized model of a dielectric superecomb” model, we can say that it comes from considering a
lattice (SL) [1]. This “Dirac-comb” model is defined by real SL, formed by an infinite array of alternating layers with
means of a one-dimensional, periodic distribution of Diracdielectric constants, ande,,, whose widths are — A andA,
delta functions in a background dielectric medi{i), and  respectively(see Fig. 1 of papep)andd is the period. If we
yields a band structure that is similar to that obtained frontake the limitse,,— and A—0 in such a way that the
the realistic model of the S[3]. In this work, here referred factor €,,A/d is kept constant, then the Dirac-delta model
to as paper |, the surfaces of constant frequepeyk) can be obtainedsee paper)l In this limit the factore,A/d
=consi and the density of modes, or density of statesbecomes the grating strengitthat appears in Eq1).
(DOY), were also plotted for the TE modes.
The present paper is closely related to paper [; it concerns B. TM modes
the very same, “Dirac-comb” model of the SL, now, how-

ever, we study the transverse magnétib) modes(Sec. I, In an inhomogeneous dielectric medium, Maxwell's equa-

thus completing the investigation of the normal modes of thisticzjns tlgadf_tc)ldtge fc?llowing wave equation for the magnetic
system. In Sec. Il we present the calculation of the poghnauction fie (r):

using the equifrequency surfaces. In Sec. IV we take the Ve(r) 2¢(r)

chance to correct an error in the calculation of the DOS of V2B(r)+ € ><[V><B(r)]+w € B(r)=0. (2

the TE modes in paper I. The conclusions are presented in e(r) c?
Sec. V, although the differences between the TE and TM
modes are discussed throughout the paper. Here w is the frequency of the monochromatic field. Since

We complement the list of references in paper | with fourthe dielectric constant function, E(l), depends only o,
papers by Scalora and associafds-7]. They are all re- for the TM polarization the magnetic inductid@lies in the
stricted to propagation parallel to the SL axis, and mostlyyZ plane. Therefore it must have the functional form
deal with pulse transmission in structures with a finite num-

ber of periods. Specifically, in Ref5] analytic expressions Bu(x,y,2) = By(x)e' kW kg, 3
are found for the DOS in terms of the complex transmission .
coefficient. whereg, is an arbitrary unit vector in thgz plane. Substi-

tuting Eq.(3) into Eq. (2), we obtain

Il. NORMAL MODES X

d?B,(x 1 de(x) dB.(x
k(X)) €(x) dBy(x) w—:e(x)—ki—kg
c

dx? e(x) dx dx

A. The Dirac-delta model

+ Bk(X)

We consider an inhomogeneous, linear, and nonmagnetic
medium in which the Dirac-delta model is used to represent _ 5 (4)
the dielectric constant dependence on the position, i.e.,

o Within the regions between the barriesx) = €, = const,
)= e.+ad S(x—nd). 1 so the second term of E¢4) vanishes. Then the solution for
€x)=€tg H:Zoc ( ) @) By(x) is of the form
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FIG. 1. Band structure for the Dirac-delta model superlattice,
obtained by using the dispersion relation E&j7) for e,=1, (a) g
=0.1 and(b) g=0.6. The widths of the forbidden bands increase
with g; the upper band edges move downward, while the lower
band edges are fixed atd/c==n (n=0,1, . ..) on thedrequency
axis. The free-space dispersion relation is recovered in the gimit

—0, namely, the band gaps shrink to zero.

B(k”)(x) —A,eK0nd) g g=iK(x—nd)

(n—1)d<x<nd, 5

n=0,+1,=2,....

HereK is given by

2
(O]
K=/ ek, )
Cc

andk| is magnitude of the projection of the wavevedtoon
theyz plane, i.e.kf=kZ+kZ . Using the Bloch theorem it is
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B(kn)(x):eiand[AoeiK(xfnd)_'_ BoefiK(xfnd)]’
(n—1)d<x<nd, ()
n=0,£t1,=2....

Here kg is the Bloch wavevector, defined in the first Bril-
louin zone (~ w/d<kg=mw/d). We tried to apply the same
methodology used in | for the TE polarization in order to
derive the boundary conditions at the “barrierst=nd.
That is, we integrated Eg4) over a very small interval
around the barriers. Unfortunately, due to the strong singu-
larity of the dielectric constant functioe(x) at the barriers,
this procedure failed. Instead, we use another approach,
namely, we solve the eigenvalue problem for the model of
Eqg. (1) as a limit of the real SL.

C. Solution of the eigenvalue problem; the band structure

First, consider a real SL as the one described at the end of
Sec. Il A. For this case, the coefficients for the solution of
the field B(k”)(x) in two regions with dielectric constarst,
separated by a region with dielectric constagt are related

by [3]
(Anl f1 f2 An
Banfz ff)(sn)’ ®

Kméo Ken

. i
f,=e KA=2) cog K A)— 2( et R
m m*o

)sin(KmA)},
9)

b k- Km€o _ Kem
22

Kem Knéo

w2
K= gem—kﬁ (12)

Now we apply the following limit§2] to the matrix elements
Egs.(9) and(10):

sin(K, A), (10

A—0, e,—>,

\/eimAHO, enA—gd=const.
Then Eqgs(9) and(10) simplify to
fi=e K 1-iaK)], (12
fo=ia(K)eKd, (13)
_gd
Now, from Egs.(5) and(7)
Al [Ana
_e.de< ) (15)
( Bn anl

possible to obtaiB, in the n'" region in terms of the region Then combining the Eq¢8) and (15) the characteristic ma-

n=0, that is,

trix M is obtained



5804 JORGE R. ZURITA-SAICHEZ AND P. HALEVI PRE 61

(An> (fl—e‘“‘Bd f ) A
M = r
By f3 fr—e e/ B,

lower edge of the first band. It is then clear that our “Dirac-

=0. (16) comb” model cannot give rise to the Brewster effect and,
indeed, no closure of the bandgaps is manifest in Fig. 1.

Next we turn to the determination of the eigenvectors,
namely,B{")(x). Using Eq.(16) the coefficientsA, and B,
are related by

cog kgd)=cogKd)— a(K)sin(Kd). (17) e ikgd_ ¢
1
. . . . : . : Bo=—=%—"A0, (19

Equation(17) is the desired dispersion relation. It is formally fa
the same as the dispersion relation E) of paper | for the
TE modes. The difference is entirely due to the fact that, fo
TE modesa(K)=gdw?/(2¢?K). In the present case; de- i
pends onw only implicitly, throughK, and this will affect B(k”)(x):Aoeide”( KO _[(1—jq)e 2Kd
qualitatively the DOS. @

In Fig. 1 we plot the band structure fg=0.1 andg
=0.6. The shadowed regions are the allowed bands. It is —e“(kB+K)d]e‘iK(x‘“d’]. (20)
known [8] that the lower and upper edges of the first band
are characterized bkg=0 and kg= = 7/d, respectively.
The order is inverted for the second band, namely, its lower lll. DENSITY OF STATES
and upper edges are given, respectively kgy * 7r/d and : :
kg=0. For the third band the corresponding values lase ;g i\é\geegg:lﬂgrg?if[?[ﬁ?p(oal);r:;;?oﬁq.(25) of paper I, which
=0 andkg= = 7r/d, and so on for the other bands. Thus all

n

In order to have nontrivial solutions, the determinank/bf
must be zero. Then we obtain that

50, B{"(x) from Egs.(19) and(7) can be expressed as

the band edges are characterized by lgoBE +1. For these v K
values of the left side of e17) there is one simple solution, D(w)= —f —Hth, (21
namelyKd=mn, wheren=0,+1,+2, ... .Using Eq.(11) 4m? wk|Vk“’|
this gives . o .
The integration is carried out on the curve formed by the
w2 2 intersection of arequifrequencyurface] w(k) =consi with
—250=—2n2+ kﬁ_ (18)  thekgk, (or k,=0) plane, andi; is a differential segment
c d of this curve. The equifrequency surfaces are formed by ro-

) tating these curves around thg axis. In Fig. 2 we display

It follows that the lower band edges are independeng of the curves obtained from the intersection of the equifre-
[see Figs. @ and ib)]. For k=0 we have wd/c  quency surfaces with thiesk, plane for several normalized
=(m/e5)n, which, we see from Fig. 1, gives the intercepts frequency od/c) values and forg=0.1 andg=0.6. The
of the lower band edges on the frequency axis. In thehorizontal lines that appear in Fig. 1 represent the chosen
asymptotic limitw/k— c/+/e,, which is the speed of light in frequency values for the Fig. 2 plots. The lita is entirely
the background medium between the barriers. It is interestingh the first allowed band, consequently the equifrequency
that forn=0 we also obtairw/k=c/\/e,, which is to say curve is closed. In the limig— 0, the equifrequency surface
that the lower edge of the first band is a straight line. Thenis the spherek3+ k§+ k2= w?e,/c?, as it should be. Ag
glancing at Fig. 1, it is apparent that alway$k>c/\/e—o. It increases the “ellipse’s” eccentricity increases. Part of line
follows from Eq.(11) thatK can never be imaginary—unlike (b) lies in the first forbidden band gap and the other part in
the case of TE polarization. the first allowed band; therefore the equifrequency surface is

Equation(18) is valid for TE, as well as for TM modes, interrupted in the region where the solution for the field does
except forn=0. In the case of the lowesh&0) TE band, not exist. The linegc) and(d) represent more complex plots
K=0 is not a solution forkg=0 becausex is inversely since they cross several forbidden and allowed bands. Also,
proportional toK [hence the second term in E49) of paper  we can notice that for a given frequency, the equifrequency
| does not vanish Therefore, the lowest band edge is not acurves for different values of are tangent to each other at
straight line in case of TE polarization. kg=0 and atkgd= = . This can be understood from the

It is not possible to derive an explicit formula for the fact that Eq(18), for the lower band edges, is independent of
upper band edges, and EG.7) must be solved numerically. g. For comparison, in Fig. 2 we also show the equifrequency
These bands are displaced downward asgtparameter in-  surfaces for the TE polarization mode, wigs= 0.6 (dotted
creases, so the forbidden bandgaps get wider, as is seen lyye). We call attention to the fact that, for higher valueswof
comparing the Figs. (&) and Xb). In fact, we notice from or g, these plots tend to become elongated in directickgof
Fig. 1 that the band structure is very sensitive to ghga-  This occurs for both modes, but more so for the TE polar-
rameter. ization. The meaning of this feature is that, for large frequen-

The realistic model of the superlattice predicts a distinc- cies or grating strengttor dielectric contrast, in the case of
tive feature for the TM modes, namely, the closure of thea real S, the equifrequency surfaces essentially become a
band gaps alongside a straight line through the origin in theet of concentric, hollow, and narrow circular cylinders; see
w/c versusk diagram([3] because of the Brewster’s condi- Fig. 2(d), g=0.6. Of course, the explanation is that, the
tion. The slope of this line is/1/e,+ 1/e,. In the limit e,  greaterw or g are, the wider the band gaps become, thus
—oo this reduces to 1fe,, which just coincides with the narrowing down the values & allowed for propagation.
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FIG. 2. Four intersections of normalized equifrequency surfadés .k, ,k,)d/c=const with the normalize#gd—k,d plane for TM
and TE modes. The solid lines and the dashed lines correspond to TM modgs- il andg=0.6, respectively. The dotted lines
correspond to TE modes fagy=0.6, and are plotted for comparisof@ Normalized equifrequency surface feid/c=1.0. (b) For wd/c
=3.0 the curves are interrupted because there is no propagating solution for this regipnabies; see Fig. 1, line lc) For wd/c
=4.0.(d) For od/c=6.0 there are two interrupted regions, as can be understood from Fig. 1, line d.

The gradient of the frequency with respect to wave

vectork is given by

dw. Jdw. Jwa

Vo= &—kaJr a—l(nyr a—kzz. (22

Using the Eqgs(11) and(17), Eq. (22) becomes

Vooe c? [ Ksin(kgd) - T 03
kw—eo—w 7F[K(w,ku)]x+ Wtk.z|. (23
Here the functiorF[K(w,k|)] is defined as
F[K(w,ky)]=sin(Kd) 1+i + g Kd cogKd)
@AVI= 2¢p/  2e, '
(24)

Finally, substituting Eq(23) into Eq.(21) the DOS for TM
polarization is obtained as

D(e)= Veowf Kj|F[K(w,k)]| ;
4772C2 wk\/KzS|n2(de)+{kHF[K((D,kH)]}2 v
(29

The DOS function vs normalized frequeney/c for sev-
eral values ofy is shown in Fig. 3. The discontinuities of the
slopes occur at the frequency band gap edgeskfer0
[compare with the intercepis(k =0) in Fig. 1 forg=0.1
andg=0.6]. When the frequency reaches a lower band gap
edge the slope of the DOS function is abruptly diminished.
On the contrary, when it reaches the upper bandgap edge the
slope suddenly increases. For these latter frequency values,
given by wd/c= (m/e,)n according to Eq(18), the DOS
coincides with the free space DQ&ashed curve This fea-
ture is not exhibited by the TE polarization, as we will see in
next section. The DOS never vanishes and, for any frequency
w, it is never smaller than that of free space.
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=dN/d(wd/c)] for TM polarization as a function of the normal- =dN/d(wd/c)] for TE polarization as a function of the normalized
ized frequencywd/c, for several values aj. The inset extends the frequencywd/c for several values of the grating strengthThe
frequency range to the interval (G72. Note the discontinuities in  inset extends the frequency range to the interval£),2Ve can see
the slope for frequencies that define the band gap edges. Notice, tlige discontinuities in the slope for frequencies that define the band-
DOS is enhanced for all values af andg with respect of that of gap edges(The plot is a bit “wavy” for the normalized frequency

free space. values close to 2 because of computational difficultigsNotice
that the DOS is enhanced for all values @fand g. This figure
IV. COMPARISON WITH THE DOS FOR THE TE replaces the erroneous Fig. 5 of paper I.

POLARIZATION

We take the opportunity to correct an error in paper |,are given by a simple, explicit formula and they do not de-
specifically in the calculation of thg and z components of pend on the grating strength This is also valid for the TE
the gradient ofw with respect tok [Eq. (26) of paper 1. modes except for the lowest band edge. The lowest band
Equations(27) and (28) of paper | should be replaced by  edge is a straight line of slopaa/kH:c/\/e—0 for TM modes;

5 not so for TE modes. We have also plotted the equifrequency

|ka|TE:C_ _ (Ksindei surfaces. For large values of or g, they become, essen-
wéy |F(o,K(w,k))) tially, a set of concentric, hollow, and narrow circular cylin-
ders centered on the SL axis. For the TM polarization, no
+ F[(u,K((u,k)]—egSian}(ky}?-i- k,2) ‘ reduction of the DOS occurs for any frequency with respect
(o)

to that of free space. The DOS is an increasing function of
the frequency, and it has slope discontinuities at the band

Ve,w edges. At the upper band edges the slope diminishes
D(‘*’)TE:4 22J. dry abruptly, then at the lower band edges it abruptly increases.
ek These characteristics are also present for the TE polarization.
However, the DOS plots for TM modes, for different values
k| F[w,K(w,k))]| V6 for d |
% , of g join at the upper band edges, while, in comparison,
\/KZSin2k5d+kﬁ{p[w,K(w,kH)]_(g/fo)sin Kd}2 those for the TE modes never cross.

Even though the widths of the forbidden band gaps can be
where the functiorF[ w,K(w, k)] is defined by Eq(29) of  adjusted withg, this “Dirac-comb™” model for the TM po-
paper I. larization has the disadvantage that the Brewster effect is not

The corrected Density of StatéB0S) plot obtained from  manifest. Therefore, some qualitative features of the DOS of
Eq. (28), for several values of}, is shown in Fig. 4. In the TM modes for the real SL, in comparison to those of this
comparison to the original figur@=ig. 5 of paper ), some simplified model, could be different. On the other hand, for
qualitative features remain the same: the discontinuities othe TE polarization the parametgrcan be adjusted to give
the slopes of the curves occur at the band gap edges, amqgialitative insight into optical properties of the real SL for
there is an enhancement of the DOS with respect to that d¢his polarization. We expect these results for the DOS to be
free space. The differences are that the sharp peaks at thelevant for the analysis of spontaneous emission in super-
lower edges of the gaps are absent and that curves for difattices.
ferent values ofj never cross.
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